29 research outputs found

    Long-Range Enhancer Associated with Chromatin Looping Allows AP-1 Regulation of the Peptidylarginine Deiminase 3 Gene in Differentiated Keratinocyte

    Get PDF
    Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease

    Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival.</p> <p>Methods</p> <p>A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers.</p> <p>Results</p> <p>A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. <it>Pik3r1</it>, <it>E2f3, Akr1c3</it>, <it>Csf1</it>, <it>Jag2</it>, <it>Plcg1</it>, <it>Rpl37a</it>, <it>Sod2</it>, <it>Topors</it>, <it>Hras</it>, <it>Mdm2, Camk2g</it>, <it>Fstl1</it>, <it>Il13ra1</it>, <it>Mtap </it>and <it>Tp53 </it>were associated with multiple survival events.</p> <p>Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for <it>Syne1</it>, <it>Pdcd4</it>, <it>Ighg1</it>, <it>Tgfa</it>, <it>Pla2g7</it>, and <it>Paics</it>. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. <it>C2</it>, <it>Egfr</it>, <it>Prkcb</it>, <it>Igf2bp3</it>, and <it>Gdf10 </it>had gender-dependent associations; <it>Sox10</it>, <it>Rps20</it>, <it>Rab31</it>, and <it>Vav3 </it>had race-dependent associations; <it>Chi3l1</it>, <it>Prkcb</it>, <it>Polr2d</it>, and <it>Apool </it>had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death.</p> <p>Conclusions</p> <p>Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.</p

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Livro

    No full text
    asdasdasasd

    The Utilization of Medical Devices by Traditional Korean Medicine Doctors Investigated through Traditional Korean Medicine Clinical Studies

    No full text
    Objective. The purpose of this study was to investigate the current status of modern medical devices utilized in diagnosis and treatment in traditional Korean medicine (TKM). Methods. We searched the following six Korean electronic databases to collect TKM clinical studies that were published in a five-year period (January 2012 to December 2016). Clinical studies of TKM when medical devices were used for diagnosis or treatment were investigated. Results. The search generated a total of 3,735 articles, and 1,328 of these were considered to be clinical studies. Of a total of 1,328 clinical studies of TKM, 774 articles (58.3%) used medical devices for diagnosis or treatment, and 554 articles (41.7%) did not use medical devices for diagnosis or treatment. The three most used diagnostic devices were as follows: MRI scanners, which were used in 194 (20.6%) studies; X-ray machines, which were used in 172 studies (18.3%); and CT scanners, which were used in 139 studies (14.8%). The three most used treatment devices were electroacupuncture equipment (20.3%), transcutaneous electrical nerve stimulation (TENS) equipment (18.4%), and interferential current therapy (ICT) equipment (16.4%). Conclusions. This study suggests that TKM doctors use diagnostic information derived from modern medical devices clinically. It is therefore necessary to institutionalize considering changes to the medical acts of traditional medicine (TM) doctors. Additionally, this information can be utilized as a reference for developing TM policy and education
    corecore